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Abstract. A microscopic model is employed to calculate the spectrum of dipole-exchange spin waves in
multilayers in which thin ferromagnetic films are separated by non-magnetic spacers. Two configurations
are considered: in one the films have magnetizations parallel to each other, in the other the magnetizations
are antiparallel. The calculations extend a previous microscopic formalism that allows the calculation of
the dipole-exchange spin wave spectrum in thin films. The results show the splitting of the frequency bands
and the mode mixing caused by the dipolar interaction between the films as a function of spacer thickness.

PACS. 75.30.Ds Spin waves – 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin
diffusion, dynamic scaling, etc.) – 75.70.-i Magnetic properties of thin films, surfaces, and interfaces

1 Introduction

Layered systems can display interesting properties that
are not observed in single films or in bulk materials.
Among these new nanostructured systems, layered films
of magnetic materials have attracted a great deal of atten-
tion due to their possible use in the development of novel
microelectronic devices and have thus been intensively in-
vestigated, both theoretically and experimentally [1]. The
dynamic properties of magnetic multilayers, in particular,
can be quite distinct from those of single films. For a sin-
gle ferromagnetic film with magnetization parallel to the
surface, calculations of magnetostatic modes show that,
apart from an infinite set of solutions that describe bulk
spin wave (SW) modes, solutions corresponding to surface
waves can also be found. These surface waves, also known
as Damon-Eshbach (DE) modes, have frequencies above
the bulk modes and propagate only in a restricted set of
directions [2]. Calculations of the magnetostatic modes of
structures in which magnetic layers are interspersed with
vacuum or with a non-magnetic medium have shown that
their spin wave spectrum can be significantly distinct from
the spectrum of a single film [3–6]. In such multilayers,
the long-wavelength magnetostatic frequency branches are
splitted into bands and shifted in relation to the single
film results. The broadening of the modes was shown to
depend on the spacer thickness and on the number of mag-
netic layers in the structure. These effects were proven to
be caused by a coupling of the SW modes of each film
due to the long-range dipolar interactions across the non-
magnetic spacer.
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The magnetostatic formalism provides a good descrip-
tion of the SW dynamics at long wavelengths. How-
ever, there is experimental evidence that exchange effects
can influence the dispersion of SWs even for relatively
long wavelengths [7–10]. The exchange interaction is also
known to be responsible for a modification of the DE
modes and for a quantization of the volume modes in
thin films (i.e. with thicknesses of the order of the ex-
change SW wavelengths) in comparison with thick films.
In the last decade, several papers have investigated the
wavevector regime in which both dipolar and exchange ef-
fects can significantly influence the spin dynamics in thin
films using a microscopic approach, for both ferromagnets
and antiferromagnets [11–16]. So far, however, the dipolar
coupling between separate films has not been included in
the context of these microscopic calculations.

In this paper we perform an extension of the previ-
ous models by developing a microscopic theory of dipole-
exchange spin waves propagating in magnetic layered sys-
tems. Specifically, we consider a magnetic medium that
consists of a set of ferromagnetic thin films separated by
non-magnetic spacers. A formalism is developed, which
allows us to obtain dispersion relations of the localized
surface SW as well as the quantized volume SW modes
for all wave vectors, whereas the existing macroscopic ap-
proaches are valid only in the regime of small wavevectors
and for thicker films. The model is based on a Hamilto-
nian representation of the dipolar terms, with the long-
range summations being evaluated by means of the tech-
nique described in reference [17]. The paper is structured
as follows: in Section 2 the structure of the multilayer is
described and a microscopic Hamiltonian for the system
is introduced. Expressions for the equations of motion for
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the operators are presented in Sections 3 and 4 for parallel
and antiparallel spin configurations, respectively. In Sec-
tion 5, numerical results are presented for multilayers of
GdCl3 and EuO. Section 6 has a summary of the results
and the conclusions.

2 Hamiltonian and multilayer geometry

Let us consider a system containing Nl ferromagnetic films
separated by non-magnetic spacers, as pictured in Fig-
ure 1. In the following discussion, the ferromagnets and
spacers are referred to as films, whereas the spin layers
in each ferromagnet are referred to as atomic layers. The
films have a simple cubic crystal structure, with lattice
constant a and have ideal interfaces corresponding to (001)
crystal planes. Each of the magnetic films is a single do-
main and contains Nm atomic layers (in the xy plane) with
localized spins, which are assumed to be aligned in-plane
and to interact by isotropic exchange with its nearest-
neighbors and via dipolar coupling with all other spins in
the structure. All magnetic films have the same thickness
and composition and every site in the magnetic lattice has
the same number of nearest neighbors, with the exception
of the uppermost and bottom films, which are assumed
to have vacuum interfaces. The relative orientation of the
magnetizations of neighboring films are taken to be either
parallel or to alternate along the y direction. The spacer
films are all non-magnetic and have the same thickness d,
which is expressed in multiples of the lattice parameter a.
The Hamiltonian for the system is

H = −
∑
i,j

JijSi · Sj − gµB

∑
i

H0S
z
i

+ (gµB)2
∑
α,β

∑
l,m

Dαβ
lmSα

l Sβ
m, (1)

where Jij is the exchange between nearest-neighbor sites i
and j in the same film H0 is the Zeeman field, taken as
parallel to the z−direction. The last term in the Hamil-
tonian represents the contribution of the dipolar interac-
tion. In phenomenological theories [18], this contribution
is usually expressed in terms of a demagnetizing field Hd.
In contrast, in the present model the dipolar interaction is
obtained in terms of the microscopic coupling between lo-
calized moments, with the Dαβ

lm being the long-range dipo-
lar coupling coefficient between any sites l and m in the
same or different films. The α and β indices denote com-
ponents x, y or z; g is the Landé factor and µB is Bohr’s
magneton. The expression for the dipolar factors is

Dαβ
lm =

[
|rlm|2δαβ − 3rα

lmrβ
lm

]
|rlm|5 , (2)

here the vector rlm = rl − rm connects magnetic sites in
the lattice. In order to calculate the SW frequencies, one
can write down the equations of motion for the operators
in the films. These are then transformed to a represen-
tation involving a two-dimensional in-plane wave vector

Fig. 1. Schematic depiction of a layered magnetic structure.
In this figure, the ferromagnetic thin films have spins parallel
to each other and are separated by non-magnetic spacers of
thickness d.

k = (kx, kz) parallel to the film surfaces. The resulting
system of equations can be solved numerically for the fre-
quency ω of the modes. The Fourier amplitudes of the
dipolar terms can be expressed in terms of rapidly con-
verging summations as shown in reference [15]. For multi-
layers, these expressions for the amplitudes are modified
by the presence of the spacers and by changing the rel-
ative orientation of magnetization of the films. However,
by increasing the thickness of the spacers, the ferromag-
nets eventually become uncoupled, and the resulting SW
spectrum must then reproduce the results for the single
film.

3 Parallel configuration

In this case, the system has the magnetizations of the
films parallel to each other. To each atomic layer con-
taining magnetic sites is assigned an index n, such that
n = 1, 2, · · · , Nm×Nl, where Nm×Nl is the total number
of magnetic layers in the structure. The spin Hamiltonian
can be rewritten in terms of boson creation and annihila-
tion operators by means of the Holstein-Primakoff trans-
formation [19] which, for low temperatures (i.e. T � Tc,
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where Tc is the Curie temperature of the ferromagnets)
can be written as:

Si
+ ≈

√
2S ai, (3)

Si
− ≈

√
2S ai

†, (4)

Si
z = S − ai

†ai, (5)

where ai
† and ai are boson creation and annihilation oper-

ators, respectively. The transformed Hamiltonian can then
be written as

H = −
∑
i,j

SJij

(
a†

iaj − a†
iai

)
+ gµB H0

∑
l

a†
l al

+ (gµB)2S
1
4

∑
l,m

[
Almalam + Al,ma†

l a
†
m

− 2Dzz
l,m

(
a†

l am + 2a†
l am

)]
. (6)

We have retained only the terms in the Hamiltonian
that have products of two operators, which describe non-
interacting SW and, for any two generic sites p and p′,

App′ ≡ Dxx
p,p′ − Dyy

p,p′ − 2iDzz
p,p′, (7)

App′ ≡ Dxx
p,p′ − Dyy

p,p′ + 2iDzz
p,p′. (8)

Next, the equations of motion for the creation and anni-
hilation operators are obtained, and are afterwards trans-
formed to a representation involving a two-dimensional
(2D) in-plane wave vector kn = (kx, ky), where n is an in-
dex assigned to each magnetic atomic layer of the system.
The Fourier transforms of the dipole sums in the Hamil-
tonian are similar to the terms calculated for a single fer-
romagnetic film [15,17], with additional terms including
extra distance factors, which correspond to the dipolar in-
teraction between spins in different films. Specifically, the
dipole sums that describe the interactions between spins
in different layers contain an exponential term e−2|y|γlm ,
where γlm =

√
(πl/a + qx/2)2 + (πm/a + qz/2)2 and |y|

is the distance between the layers. Thus, for layers in dif-
ferent films, the extra distance corresponding to the thick-
ness of the spacers between the films must be added to |y|.
The equations of motion become∑

n′

{
Mn,n′a†

n′(k) + Nn,n′ an′(−k)
}

= 0,

∑
n′

{
Nn′,na†

n′(k) + Mn,n′ an′(−k)
}

= 0, (9)

with

Mn,n′ =
{

gµBH0 + S

[
un(0) − un(k)

+ vn,n−1 + vn,n+1 + (gµB)2
∑
n′′

Dzz
n,n′′(0)

]}
δn,n′

− S [vn,n+1δn′,n+1 + vn,n−1δn′,n−1]

− S (gµB)2 Dzz
n,n′(k), (10)

and

Nn,n′ =
1
4
S (gµB)2

[
Dxx

n,n′(k) − Dyy
n,n′(k) − 2iDxy

n,n′(k)
]
.

(11)
The factor un(k) = 2 J [cos(kx a)+cos(kz a)] is the Fourier
amplitude of the exchange interaction between sites in the
same atomic layer and vn,n(k) = SJ is the exchange am-
plitude for interactions between sites in adjacent atomic
layers. In this paper we assume that J has the same value
for all pairs of nearest-neighbor spins. However, one can
easily modify the expressions to include different strengths
for the exchange constant at the ferromagnet-spacer or
ferromagnet-vacuum interfaces. The SW frequencies are
then calculated by solving the eigenvalue equation

χ(k)A(k) = 0, (12)

where

χ(k) =

(
M(k) 2N(k)

2N(−k) M(−k)

)
. (13)

This matrix has 4N×4N elements, where N ≡ Nm×Nl is
the total number of magnetic atomic layers. The column
matrices are defined as

Ak =

(
a†
k

ak

)
, (14)

with

a†
k =




a†
k,1

a†
k,2

...

a†
k,N




, ak =




ak,1

ak,2

...

ak,N


 . (15)

The matrices M and N can be expressed as

M(k) =




M11(k) M12(k) · · · M1Nl(k)

M21(k) M22(k) · · · M2Nl(k)

...
...

. . .
...

MNl1(k) MNl2(k) · · · MNlNl(k)


 (16)

and

N(k) =




N11(k) N12(k) · · · N1Nl(k)

N21(k) N22(k) · · · N2Nl(k)

...
...

. . .
...

NNl1(k) NNl2(k) · · · NNlNl(k)


 . (17)

The upper indices in equations (16, 17) identify the films,
which means that the Nm × Nm matrices Mtt(k) and
Ntt(k) (where t ranges from 1 to Nl), have the information
regarding the interactions between spins within the same
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film, whereas the remaining matrices describe couplings
between spins in different films, and thus do not contain
exchange terms. As mentioned above, the dipolar terms
for a matrix Mst(k) (where s �= t, and 1 ≤ s ≤ Nl) have
additional distance factors |s − t|d, due to the presence
of the non-magnetic spacers of width d. These distance
factors also are included in the summation of Dzz

n,n′′(0) in
equation (10).

4 Antiparallel configuration

In this configuration, the direction of magnetization alter-
nates along the y direction. Such configuration can be ob-
tained by using magnetic films of materials with different
coercive fields, or by taking advantage of a long-range an-
tiferromagnetic coupling between the films. In this paper
we consider an ideal case in which all magnetic layers have
the same composition and the coupling between different
films is purely of dipolar nature. Such ideal antiparallel
structures have been previously investigated in the frame-
work of a continuum model [5]. The microscopic approach
for calculating the dipole-exchange SW spectra is similar
to the procedure for the parallel case. However, care must
be taken to correctly introduce the creation and annihi-
lation operators, since the system now can be described
as being divided into two sublattices: one having spins in
each atomic layer aligned along the “up” direction (i.e.
the direction of positive z), and the other having spins
along the “down” direction. For films magnetized in the
“up” direction, one can utilize the expressions of equa-
tions (3–5). For films with spins in the “down” direction,
one can define

Sj
+ ≈

√
2S aj

†, (18)

Sj
− ≈

√
2S aj , (19)

Sj
z = −S + aj

†aj . (20)

The equations of motion are similar to those obtained for
the parallel case, with the equations (10, 11) redefined as

M st
n,n′ =

{
(−1)s+1gµBH0 + S

[
un(0) − un(k)

+ vn,n−1 + vn,n+1 + (gµB)2
∑
n′′

Dzz
n,n′′(0)

]}
δn,n′

− S [vn,n+1δn′,n+1 + vn,n−1δn′,n−1]

− (−1)s−tS (gµB)2 Dzz
n,n′(k), (21)

and

Nst
n,n′ = (−1)s−t 1

4
S (gµB)2

[
Dxx

n,n′(k)

− Dyy
n,n′(k) − 2iDxy

n,n′(k)
]
, (22)

where the (−1)s−t and (−1)s+1 factors arise due to the
opposite orientations of the spins in films with indices odd
an even.

5 Numerical results

Numerical results were obtained for structures with fer-
romagnetic films of GdCl3 (Tc ≈ 2.2 K) and EuO (Tc ≈
69 K). Ultrathin films of these materials have been re-
cently studied in the framework of a microscopic model,
that yielded results for both the linear SW spectrum as
well as nonlinear effects [15]. The GdCl3, in particular,
has a large ratio of dipolar to exchange strengths, which
means that in such ferromagnet the effects due to both
dipolar and exchange couplings may extend to a larger
wavevector range than in other systems. For the EuO
we used effective exchange parameters, since this mate-
rial does not normally have a simple cubic structure. Also
for the EuO, for the sake of simplicity we assumed only
nearest neighbor exchange coupling. The parameters for
the dipolar coupling strength (given in terms of the bulk
saturation magnetization) and the exchange field were, for
the GdCl3, 4πM = 0.82 T and Hex = 0.54 T, respectively,
and 4πM = 2.4 T and Hex = 38 T for the EuO, where in
both cases gµBHex = 6SJ .

Figure 2 shows a dispersion relation of the SW modes
of a GdCl3 structure with 3 ferromagnetic thin films in the
parallel configuration, each one comprising 25 atomic lay-
ers and separated by two non-magnetic spacers with d =
35a, and under an external field H0 = 0.36 T. The frequen-
cies of the lowest SW modes are plotted against kxa/π, for
the Voigt geometry (ky = 0) and given in units of GHz
(using γ = 28 GHz/T). One can clearly see the splitting
of the DE modes, caused by the long range coupling of the
films at small wavevectors. This behavior is in good agree-
ment with the results obtained by previous magnetostatic
theories (see, e.g., Ref. [4]). These earlier approaches, how-
ever, by treating the films as continuum media, were not
able to display the significant mode mixing effects be-
tween the surface modes and the discrete bulk branches
which are evident in Figure 2. The graph also shows the
effect of the dipolar coupling on the bulk branches. For
large wavevectors, the volume modes correspond to the
quantized frequencies that are obtained from exchange-
dominated models for single films. On the other hand,
for small kx, each of these quantized modes are split into
three separate branches. In fact, in the dipole-exchange
regime the excitations at small k can be characterized
as collective modes of the entire structure. In agreement
with the results for the dipole-exchange SW spectrum of
a single film, the lowest magnetostatic frequencies for the
multilayers are found to approach 18.25 GHz for kx = 0,
which is close to the result of [H0(H0+4πM)]1/2 obtained
from the continuum theories.

A dispersion relation for a structure with a larger num-
ber of films is shown in Figure 3. This multilayer is in the
parallel configuration and contains 10 films of GdCl3 with
15 atomic layers, each film separated from its neighbors by
a distance d = 30a, for H0 = 0.36 T. The graph shows dis-
crete branches at large wavevectors being broadened into
frequency bands at smaller wavevectors. The surface band
is found in the gaps between the volume bands. The local-
ized nature of these modes is deduced from the fact that,
as the wavevector increases, they tend to merge into the
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Fig. 2. Spin wave dispersion relation for a GdCl3 structure
with three films, in the parallel configuration, for an external
field H0 = 0.36 T. In this case each ferromagnet has 25 atomic
layers, whereas the spacers have thicknesses d = 35a, where a
is the lattice parameter of the ferromagnets.

0 0.02 0.04 0.06
kxa/π 

17

19

21

23

fr
eq

ue
nc

y 
(G

H
z)

Fig. 3. Spin wave spectrum for a GdCl3 structure with 10 films
in the parallel configuration, where the magnetic films have
each 15 atomic layers, and the spacers have thicknesses d =
30a.

DE modes of a single film. One can notice the presence
of small gaps in the SW spectrum, for SW frequencies
around 18.7 GHz, 20.0 GHz and 20.8 GHz. These gaps
arise due to a mode repulsion effect between the volume
and surface modes, a behavior that can also be observed
in Figure 2.

The mode repulsion effect is more evident in the dis-
persion graph shown in Figure 4. This result was obtained
for a 10 films EuO structure in the parallel configura-
tion, in which the atomic layers in the ferromagnets had
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Fig. 4. Spin wave dispersion relation for a EuO structure with
10 films, in the parallel configuration, for an external field H0 =
0.36 T. In this case each ferromagnet has 16 atomic layers,
whereas the spacers have thicknesses d = 8a, where a is the
lattice parameter of the ferromagnets.
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Fig. 5. Spin wave spectrum at zero external field for a GdCl3
structure with 20 films, in the antiparallel configuration, where
the magnetic layers have 5 atomic layers each, and the spacers
have thicknesses d = 50a.

16 atomic layers each, whereas the spacers had thickness
d = 8a. As in the previous results, an external field of
0.36 T was assumed. For k = 0, the lowest SW frequency
approaches 28 GHz, in agreement with the value predicted
by the continuum theories. However, the graph also shows
a minimum in the lowest dispersion branch of ≈ 25 GHz
at small wavevectors.

Figure 5 shows the SW spectrum for a GdCl3 multi-
layer in the antiparallel configuration. The structure has
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20 films, each with 5 atomic layers. The spacers have
d = 50a each. The external field is zero in this case, since
the existence of an applied field can destroy the mag-
netization configuration. As in the previous results, the
discrete frequency branches are broadened into bands at
small wavevectors due to the dipolar coupling between the
films. In this case the thickness of the spacers was set to a
larger value than in the parallel configuration calculations.
In fact, for both parallel and antiparallel configurations,
the results for the GdCl3 indicate that if the thickness d of
the spacers is comparable to the thickness of the magnetic
films, an instability of the microscopic spin configuration
may arise. This instability is signaled by the presence of
non-physical solutions corresponding to ω = 0 for non-zero
wavevectors and occurs as a consequence of the internal
bias field produced by the neighboring films. This field can
strongly affect the spins in the ferromagnet-spacer inter-
faces, since these are exchange-coupled to a smaller num-
ber of neighbors in comparison with the spin sites in the
interior of the ferromagnets. The internal field can thus
cause a reorientation of the spins out of the collinear state
at the interfaces. The instability of the collinear configu-
ration was found to depend on the number of films and
on the thickness of the spacers. It can be removed by in-
creasing the thickness d of the spacers, by applying an
external field (for the parallel configuration) or through
the addition of surface anisotropies or a modified surface
exchange constant to the model, which can effectively pin
the interface spins.

The effect of the external field is shown in the graph of
Figure 6, which displays the SW frequencies as a function
of H0. This result was obtained for a structure with 10
films, each having 7 atomic layers, with d = 7a, in the
parallel configuration, for kxa = 0.005π. As the external
field approaches zero, the lowest SW branch goes to zero,
which indicates a possible instability of the collinear state.
As the field increases, the collinear state is recovered and
the SW frequencies begin to show a linear dependence on
the field.

Two graphs in Figure 7 show results for the lowest
SW frequency branches as a function of spacer thick-
ness, for multilayers of EuO at zero external field and for
kxa/π = 0.01. The upper plot (a) was obtained for the
parallel configuration, whereas the lower plot (b) was cal-
culated for the antiparallel configuration. In both cases the
structures have 10 magnetic films and the ferromagnets
have 10 atomic layers each. The effects of the long-range
coupling are found to be significant, in this wavevector
range, even for spacer widths that are much larger than
the individual film thicknesses. For thin spacers, the SW
branches are broadened into bands, which is particularly
wide in the antiparallel case. As the thickness increases,
the branches merge into the quantized modes predicted by
exchange-dominated models at d ≈ 200a. For larger values
of k, the width of the bands is also found to decrease, as
a consequence of the weaker coupling of the modes. The
instability of the microscopic spin configuration does not
occur in this case, due to the smaller strength of the dipo-
lar coupling in comparison with the exchange interaction
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Fig. 6. Lowest SW frequencies as a function of external
field for a GdCl3 multilayer in the parallel configuration, for
kxa = 0.005π. The structure has 10 magnetic films, each with
7 atomic layers. In this case, d = 7a.
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Fig. 7. Lowest SW frequencies as a function of spacer thickness
for a EuO multilayers, for kxa = 0.01π in the parallel (a) and
antiparallel (b) configurations. The structure has 10 films and
each film has 10 atomic layers. The external field was set to
zero.

in the EuO. The data in both graphs agree well with the
results of the continuum theories (see, e.g. [3]).

The presence of gaps in the SW spectrum can be seen
in Figure 8, which shows the lower frequency branches as
a function of the total number of films, for multilayers
of GdCl3. In this case the structures are in the parallel
configuration and under an external field of 0.36 T. The
magnetic films have thickness 5a, the distance between the
films is d = 5a, and kxa = 0.01π. The graph shows both
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Fig. 8. Lowest SW frequencies as a function of the number
of films, for a GdCl3 multilayer in the parallel configuration.
In this case the magnetic films have 5 atomic layers and the
external field was set to 0.36 T.
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Fig. 9. Lowest SW frequencies as a function of the number of
films, for a GdCl3 multilayer in the antiparallel configuration.
The magnetic films have 5 atomic layers and the external field
was set to zero.

volume and interface modes, with the latter arising from
the volume band as the number of films is increased. A
small frequency gap is found between 19.3 and 19.4 GHz.
Figure 9 shows the SW frequencies as a function of the
total number of films for the antiparallel configuration of
GdCl3 multilayers. In this case, the external field was set
to zero. The magnetic films have thickness 5a, the distance
between the films is d = 20a, and kxa = 0.01π. Due to the

larger distances between the films, the frequency bands
are found to be narrower. The lower frequencies approach
zero as the number of films increases, as a consequence of
the internal field of the structure.

6 Conclusions

We have presented a microscopic model of magnetic mul-
tilayers based on a Hamiltonian formalism previously ap-
plied to the study of dipole-exchange SW in ultrathin
ferromagnetic films. The present theory includes nearest-
neighbor exchange coupling between localized spins in
each magnetic layer of the structure, and also takes into
account the long-range dipolar coupling between all spins
in the medium. Numerical results for the dipole-exchange
SW spectrum were presented for multilayers with param-
eters corresponding to the ferromagnets GdCl3 and EuO.
The data show the effect of the long-range nature of the
dipolar interaction, which couples the SW modes in each
film and thus causes significant modifications of the SW
frequency branches, in comparison with the results for a
single film. The results were obtained for two cases: a con-
figuration with all films magnetized parallel to each other,
and an antiparallel configuration, in which the magnetiza-
tion alternates along the y direction. The differences in the
dipolar field for each configuration were shown to give rise
to distinct behaviors of the SW modes, such as the broad-
ening of the SW branches into bands, which was found
to be more pronounced in the antiparallel case. This be-
havior agrees with previous results obtained in the frame-
work of theories based on a continuum model of ferromag-
netic films. These theories, however, by assuming a uni-
form precession of the magnetization in each film, cannot
take into account the influence of the volume SW modes.
Thus, the microscopic nature of the present model causes
the presence of features in the SW spectrum that cannot
be accounted for by a continuum description, such as hy-
bridization effects between the interface and the quantized
volume frequency branches, which creates gaps in the SW
spectrum. Another microscopic consequence of the dipole-
dipole coupling is a possible reorientation transition of the
spins at the ferromagnet-spacer interfaces, due to the in-
ternal bias field of the structure, that has a dependence on
the thicknesses of the spacers and on the surface param-
eters. The reorientation of spins at the surfaces of mag-
netic films and multilayers is a phenomenon that has at-
tracted considerable attention [20]. In phenomenological
approaches, this behavior is obtained as a consequence
of an external applied field or through the addition of
surface induced exchange and anisotropy energy contri-
butions. On the other hand, in the present calculation
the reorientation results from the dynamic aspect of the
dipolar interaction between the films. Theoretical exten-
sions of this model could take into account the influence of
interface roughness on the SW spectrum, structures with
spacers with different thicknesses, other ferromagnets with
different compositions and exchange interaction schemes,
and the influence of a long-range exchange coupling, which
has been observed in metallic multilayers.



144 The European Physical Journal B

The authors gratefully acknowledge the financial support of
the Brazilian agency CNPq.

References

1. Ultrathin Magnetic Structures, Vols. I and II, edited by B.
Heinrich, J.A.C. Bland (Springer-Verlag, Berlin, 1994)

2. R.W. Damon, J.R. Eshbach, J. Phys. Chem. Solids 19, 308
(1961)

3. P. Grünberg, K. Mika, Phys. Rev. B 27, 2955 (1983)
4. P.R. Emtage, M.R. Daniel, Phys. Rev. B 29, 212 (1984)
5. K. Mika, P. Grünberg, Phys. Rev. B 31, 4465 (1985)
6. P. Grünberg, J. Appl. Phys. 57, 3673 (1985)
7. J.D. Adam, T.W. O’Keefe, R.W. Patterson, J. Appl. Phys.

50, 2446 (1979)
8. Yu.F. Ogrin, A.V. Lugovoskoi, Sov. Tech. Phys. Lett. 9,

421 (1983)
9. B.A. Kalinikos, N.G. Kovshinikov, A.N. Slavin, Sov. Phys.

– JETP Lett. 59, 586 (1983)

10. B.A. Kalinikos, N.G. Kovshinikov, A.N. Slavin, Sov. Phys.
– JETP Lett. 94, 303 (1988)

11. R.P. Erickson, D.L. Mills, Phys. Rev. B 43, 10715 (1991)
12. R.P. Erickson, D.L. Mills, Phys. Rev. B 44, 11825 (1991)
13. F.C. Nortemann, R.L. Stamps, R.E. Camley, Phys. Rev.

B 47, 11910 (1993)
14. R.N. Costa Filho, M.G. Cottam, G.A. Farias, Solid State

Comm. 108, 439 (1998)
15. R.N. Costa Filho, M.G. Cottam, G.A. Farias, Phys. Rev.

B 62, 6545 (2000)
16. J.M. Pereira Jr, M.G. Cottam, Phys. Rev. B 68, 104429

(2003)
17. H. Benson, D.L. Mills, Phys. Rev. 178, 839 (1969)
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